Abstract

Due to the moving plane mirror, tilt compensation is crucial and challenging in designing high precision Michelson-type interferometers. In this paper, we propose an optical configuration design using an image rotator and plane mirrors, including a movable double-sided mirror (DSM) to balance out the tilt of the mirror. We analysed the optical path differences (OPD) caused by the tilt of the DSM and their effects on interferogram under different tilt cases. Analyses demonstrate that this design is able to cancel out the offset of the OPD introduced by the tilt pitch angle. For different incident rays in parallel, the position of the tilt centre has no relationship with the change of the OPD, implying that the OPD could be self-compensated, and the modulation of the interferogram will not be degraded due to the tilt. This configuration effectively relaxes the requirements on the control of the precision of the postures of the moving mirror and thus may have broad applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.