Abstract
This paper proposes a novel dual-input matrix converter (DIMC) to integrate two three-phase ac type energy resources to a power grid. The proposed matrix converter is developed based on the traditional indirect matrix converter under reverse power flow operation mode, but with its six-switch voltage source converter replaced by a nine-switch configuration. With the additional three switches, the proposed DIMC can provide six input terminals, which make it possible to integrate two independent ac sources into a single grid-tied power electronics interface. The proposed converter has input-to-output voltage boost capability since power flows from the converter's voltage source side to its current source side. Commanded currents can be extracted from the two input sources to the grid. The proposed control and modulation schemes guarantee sinusoidal input and output waveforms as well as unity input power factors. The simulation and experimental results using a laboratory prototype are provided to validate the effectiveness of the proposed control and modulation schemes for the proposed converter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.