Abstract

We have developed a multiplex imaging method for detection of proteins using atomic force microscopy (AFM), which we call multiplex recognition imaging (mRI). AFM has been harnessed to identify protein using a tip functionalized with an affinity molecule at a single molecule level. However, many events in biochemistry require identification of colocated factors simultaneously, and this is not possible with only one type of affinity molecule on an AFM tip. To enable AFM detection of multiple analytes, we designed a recognition head made from conjugating two different affinity molecules to a three-arm linker. When it is attached to an AFM tip, the recognition head would allow the affinity molecules to function in concert. In the present study, we synthesized two recognition heads: one was composed of two nucleic acid aptamers, and the other one composed of an aptamer and a cyclic peptide. They were attached to AFM tips through a catalyst-free click reaction. Our imaging results show that each affinity unit in the recognition head can recognize its respective cognate in an AFM scanning process independently and specifically. The AFM method was sensitive, only requiring 2 to 3 μL of protein solution with a concentration of ∼2 ng/mL for the detection with our current setup. When a mixed sample was deposited on a surface, the ratio of proteins could be determined by counting numbers of the analytes. Thus, this mRI approach has the potential to be used as a label-free system for detection of low-abundance protein biomarkers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.