Abstract

A high‐order finite difference method for the two‐dimensional complex Ginzburg–Landau equation is considered. It is proved that the proposed difference scheme is uniquely solvable and unconditionally convergent. The convergent order in maximum norm is two in temporal direction and four in spatial direction. In addition, an efficient alternating direction implicit scheme is proposed. Some numerical examples are given to confirm the theoretical results. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 876–899, 2015

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.