Abstract

A necessary step in understanding failure problems of tribological elements is to investigate the contact performance of rough surfaces subjected to frictional heating. It is essential that the interfacial variables are obtained through solving the interactive thermomechanical contact problem. This paper studies the three dimensional thermomechanical contact of non-conforming rough surfaces, the model of which includes the normal surface displacements caused by the contact pressure, frictional shear, and frictional heating. Influence coefficients and frequency response functions for elastic and thermoelastic displacements, as well as those for temperature rises, are investigated for model construction. In order to develop an accurate and efficient solver, the numerical algorithms with the discrete convolution and fast Fourier transform techniques and the single-loop conjugated gradient method are used. The model modules are numerically verified and the thermomechanical performance of the rough surfaces in a point contact is studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.