Abstract
Abstract The objective of this study is to investigate mountain effects on a frontal system in three dimensions. The frontal system is developed from the most unstable Eady wave in a baroclinic state without a mountain. The developed frontal system is then introduced into a new model domain that contains mountains with different sizes, shapes, and orientations. In general, it is found that the cold front experiences a weakening on the upwind slope and strengthening on the downwind slope of a mountain. The locations of these upwind and downwind sides are determined by the horizontal winds associated with the front. Before the front reaches a mountain, the prevailing wind impinging on the mountain is the prefrontal southwesterly. After the front reaches the top of the mountain, the impinging wind shifts to be the postfrontal northwesterly. Therefore, mountain-induced fronto-genetic forcing by these winds varies spatially as the front passes the mountain. When the front moves down the slope, it speeds up and...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.