Abstract
A multi-geometry and multi-physics model is developed for a Li-ion battery module which includes three cells connected in series by electrical busbars. The model can be used to predict the 3D profiles of the electrical potentials and temperature in the battery. The physics-based porous electrode (P2D) model is used to predict the electrochemical behavior of the cells, and the coupling between the P2D model and the electrical/thermal equations is simplified through a linear approximation method. This approximation is useful at rates of at least 5C and reduces the computation time significantly. The anisotropic conductive properties for the regions where conductors are separately arrayed are discussed in detail, and the model predictions are presented and discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.