Abstract

An electromagnetic energy source in the radio-frequency range delivers power to a stent circuit via resonant inductive coupling, allowing a thermally triggered release of gel via Joule heating. A gold-electroplated, medical-grade stainless steel stent, serving as the base of the prototype device, melts a coating made from an emulsion composed mainly of dodecanoic acid. These coated devices produce wirelessly controllable releases of a gel into thermally regulated, stirred water that is near body temperature. The gel is made from salt, water, and gelatine from porcine skin and used to simulate drug release in this study. Thus, this system serves as a proof of concept to show the viability of controlling local drug delivery using this prototype device. Dodecanoic acid, a fatty acid, has a phase transition from solid to liquid near 43[Formula: see text]C and has relatively good biocompatibility. The average melting temperature of two different emulsions was 40.8±0.7[Formula: see text]C, a suitable value for the targeted application. Demonstration of controllable releases used electromagnetic pulses of approximately 180 seconds in duration, illustrating reproducibility of a controllable release phase while remaining relatively inert in the absence of stimuli. Releases were observable through measuring the conductivity of the water, the water temperature, and the stent temperature. This electrothermally active stent device enables wirelessly controlled local delivery with controlled dosage and timing, a concept with a wide range of potential applications. Some relevant examples include inhibiting restenosis or cancer treatment via targeted chemotherapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.