Abstract

Thermophilic cellulases are of significant interest to the efficient conversion of plant cell wall polysaccharides into simple sugars. In this study, a thermophilic and thermostable endo-1,4-β-glucanase, TeEgl5A, was identified in the thermophilic fungus Talaromyces emersonii CBS394.64 and functionally expressed in Pichia pastoris. Purified recombinant TeEgl5A exhibits optimal activity at pH 4.5 and 90°C. It is highly stable at 70°C and over a broad pH range of 1.0-10.0, and shows strong resistance to most metal ions, sodium dodecyl sulfate (SDS), and proteases. TeEgl5A has broad substrate specificity and exhibits high activity on substrates containing β-1,4-glycosidic bonds and β-1,3-glycosidic bonds (barley β-glucan, laminarin, lichenan, CMC-Na, carob bean gum, and birchwood xylan). Under simulated mashing conditions, addition of 60 U TeEgl5A reduced more viscosity (10.0 vs.7.6%) than 80 U of Ultraflo XL from Novozymes. These properties make TeEgl5A a good candidate for extensive application in the detergent, textile, feed, and food industries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.