Abstract

AbstractQuantum chemical calculations were used to study the production of ethylene and keto/enol tautomers from ethoxyquinoline (2‐EQ) and ethoxyisoquinoline (1‐EisoQ and 3‐EisoQ) in the gas phase and ethanol at the MP2/6‐311++G(2d,2p)//BMK/6‐31+G(d,p) level. The obtained data indicate that the elimination of ethylene from 1‐EisoQ and 2‐EQ is slightly more favorable than from 3‐EisoQ. Formation of quinolone and isoquinolone (2‐EQO, 1‐EisoQO, and 3‐EisoQO) is kinetically favored compared to their enols. Decomposition of 2‐EQ and 1‐EisoQ to ethylene and keto forms is thermodynamically and kinetically preferable more stable than the corresponding enols. However, the hydroxy form of 3‐EisoQ is more stable than its keto tautomer in the gas phase and ethanol. The enol tautomers cost less energy when formed from their keto forms rather than from the parent ethoxyquinolone and ethoxyisoquinoline.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.