Abstract
This work proposes the targeted transport of therapeutic agents using a thermo-electromagnetically actuated microrobot. This microrobot is fabricated via UV polymerization using 2D lithography and is composed of an electromagnetically actuated layer (polyethyleneglycol diacrylate dispersed with iron(II,III) oxide and a thermo-responsive layer (N-isopropylacrylamide). The microrobot can self-fold, driven by temperature changes, and can be steered using an electromagnetic actuation (EMA) system that provides external magnetic fields. In particular, during the EMA, pulling and rolling motions are applied to the unfolded and folded shapes, respectively, of the microrobot. As fundamental tests, the microrobot was characterized in terms of its magnetization curve, swelling properties, travel velocity, and shape changing behavior. In addition, typical polystyrene bead manipulations such as trapping, delivery, and release were performed using the microrobot. Finally, we performed an in vitro test for tumor therapy, in which the robot demonstrated the ability to trap, deliver, and release an anti-cancer drug (docetaxel) encapsulated in microbeads of approximately 300 mm in diameter with an appropriate drug concentration against a mouse mammary tumor cell line (4T1). The outcomes of this research suggest that our thermo-electromagnetically actuated microrobot is suitable for use in biomedical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Control, Automation and Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.