Abstract

Purpose The purpose of this paper is to numerically study the variations of oil film pressure, thickness and temperature rise in the contact zone of plate-pin pair in silent chains. Design/methodology/approach A steady-state thermal elastohydrodynamic lubrication (EHL) model is built using a Ree–Eyring fluid. The contact between the plate and the pin is simplified as a narrow finite line contact, and the lubrication state is examined by varying the geometry and the plate speed. Findings With increase in the equivalent radius of curvature, the pressure peak and the central film thickness increase. Because the plate is very thin, the temperature rise can be neglected. Even when the influence of the rounded corner region is less, a proper design can beneficially increase the minimum film thickness at both edges of the plate. Under a low entraining speed, strong stress concentration results in close-zero film thickness at both edges of the plate. Originality/value This study reveals the EHL feature of the narrow finite line contact in plate-pin pairs for silent chains and will support the future works considering transient effect, surface features and wear.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.