Abstract

In this paper, we examine the three-level optical Stark effect of excitons in InGaAs/InAlAs quantum dots using renormalized wavefunction formulation. The system was assumed to be irradiated by two lasers in which a strong laser dynamically couples electron-quantized levels, while a weaker laser probes interband absorption. Our results show that, in the presence of the resonant strong laser, two new absorption peaks of excitons appear in the absorption spectrum as a clear indication of the effect. In addition, we propose that the formation of the effect in low-dimensional structures could have connection to the splitting of electron levels. Furthermore, we seek to explain the essential dependence of the amplitude and position of two peaks on pump field detuning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.