Abstract

A model of a secondary hydrodynamic lubrication mechanism, which is called micro-pool or micro-plasto hydrodynamic lubrication, has been developed. It shows that, with sufficiently high viscosity and sliding speed, the lubricant trapped in the micro-pools between the tool and workpiece can be drawn into the interface. The friction force is either increased or decreased, depending on the viscosity and sliding speed. Without bulk stretching, the product of the lubricant viscosity and sliding velocity can be used as an index to indicate whether or not micro-pool lubrication will occur. Stretching the workpiece may make a strong influence not only on the thickness of the permeating film but also on the asperity contact area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.