Abstract

Abstract. The objective of the present paper is to develop a theoretical model describing the evolution of a turbulent wake behind a towed sphere in a stably stratified fluid at large Froude and Reynolds numbers. The wake flow is considered as a quasi two-dimensional (2-D) turbulent jet flow whose dynamics is governed by the momentum transfer from the mean flow to a quasi-2-D sinuous mode growing due to hydrodynamic instability. The model employs a quasi-linear approximation to describe this momentum transfer. The model scaling coefficients are defined with the use of available experimental data, and the performance of the model is verified by comparison with the results of a direct numerical simulation of a 2-D turbulent jet flow. The model prediction for the temporal development of the wake axis mean velocity is found to be in good agreement with the experimental data obtained by Spedding (1997).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.