Abstract

The finite-element method is used to solve the compressible Reynolds equation which governs the fluid flow between the journal surface and the leaves in a multileaf journal bearing. The solution obtained is then coupled with the load-deflection equations of the leaves to obtain such information as liftoff speed and minimum film thickness. In addition, the load-deflection equations yield the initial preload on the journal, the startup torque, the stiffness coefficients, and the equivalent damping coefficients. Such details as leaf curvature, friction between leaves, and between leaves and journal surface are considered in the load-deflection equations. Results are obtained for a wide range of operating parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.