Abstract
Don Juan Pond, located in the Wright Valley, Victoria Land, is unique for several reasons. It is the most saline of the Antarctic lakes, being a near-saturated CaCl2 solution. As a consequence of this high salinity, Don Juan Pond generally remains unfrozen in winter, even at temperatures below -50°C. Don Juan Pond is the site where antarcticite (CaCl2·6H2O) was first identified forming naturally. The objective of this paper is to demonstrate the utility of a chemical thermodynamic model (FREZCHEM) by developing theoretical stability diagrams for ice, halite (NaCl), hydrohalite (NaCl·2H2O), and antarcticite in Don Juan Pond, using experimental data collected on 34 days between 1961 and 1983. The composition of Don Juan Pond at the calculated eutectic temperature (-51.8°C) was CaCl2 = 3.72 mol kg−1 and NaCl = 0.50 mol kg−1, which is similar but not identical to a pure NaCl–CaCl2–H2O system. The low eutectic temperature and high CaCl2 concentrations of Don Juan Pond account for lack of freezing during winter. The model is compatible with the experimental data, and predicts the formation of ice during rare high water periods, halite, and antarcticite. These solid phases have all been reported from Don Juan Pond. The model also predicts the formation of hydrohalite at subzero temperatures; hydrohalite has never been observed at Don Juan Pond, but this may simply reflect that most sampling was done during the summer when halite is thermodynamically more stable than hydrohalite. The FREZCHEM model may prove useful in elucidating the physicochemical behaviour, the origin of salinity, and the evolution of Antarctic lakes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.