Abstract

Electromagnetic (EM) field measurements were conducted near a prototype system that launches metal plates via EM induction. These plates are intended to augment a vehicle's passive armor by intercepting incoming kinetic energy (KE) projectiles some distance away from the vehicle. The subscale EM induction launcher consists of two 4.5-turn, 15 cm square spiral coils machined from 1.27 cm thick copper-beryllium plate. This type of system is designed to launch a 15 cm square aluminum plate in an edge-on orientation as was done for an earlier design (see W. Coburn, C. Le, and H. Martin, US Army Research Laboratory Report ARL-MR-206, April 1995), both the short-term magnetic fields associated with the launch process and the long-term electric fields associated with the flying plate were measured. A theoretical model designed to simulate the magnetic fields surrounding the launcher has been developed and its results compare favorably with measured data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.