Abstract

In ultra-precision raster milling (UPRM), the impulse spindle vibration induced by the impulse-like cutting forces is intrinsic and special mechanism majorly influencing surface topography. It is fundamentally distinctive with the step spindle vibration induced by the step-like cutting forces in turning. However, no work has been conducted to study surface generation under the impulse spindle vibration in UPRM in depth. Consequently, this paper theoretically and experimentally elaborates that in UPRM, (i) the impulse spindle vibration includes the axial, radial and coupled-tilting spindle vibration with damping; (ii) the excitation frequency of the impulse-like cutting forces, i.e. spindle speed, determines the spindle vibration characteristics, i.e. synchronous or asynchronous spindle vibration; (iii) the coupled-tilting spindle vibration is a predominant factor influencing surface generation; and (iv) the irregular spindle-vibration waves induced by the impulse spindle vibration produce one of the irregular, lattice-like and stripe patterns or their hybrids at a milled surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.