Abstract
Synergistic effects in mixed binary surfactant systems have been investigated by analyzing the main contributions to the free energy of forming a mixed surfactant aggregate. We show that a nonlinear behavior of the critical micelle concentration (cmc) with respect to the surfactant composition of the aggregates is determined by a nonlinear behavior of the free energy per aggregated surfactant. It appears that synergistic effects are due mainly to entropic free energy contributions related with the surfactant headgroups. For a mixture of a monovalent ionic and a nonionic surfactant in the absence of added salt we obtain, entirely because of electrostatic reasons, a negative deviation from ideal behavior of the cmc vs the aggregate composition corresponding to an interaction parameter β ≈ −1, whereas β values on the order of −5 or even less can arise for mixtures of two ionic surfactants with the same charge number but with different hydrocarbon moieties. Moreover, we introduce a novel expression for the free energy of mixing aggregated surfactant headgroups with surrounding solvent molecules. Accordingly, synergistic effects arise as a result of different headgroup cross-section areas in mixtures of two nonionic surfactants with rigid headgroups. These effects are found to be rather small, with 0 > β > −1, when the difference in headgroup size is modest but can become more significant when the size difference is larger. In mixtures of an ionic and a nonionic surfactant with different headgroup cross-section areas the two contributions to synergistic effects always enhance one another and, hence, β values below −1 are obtained. Generally, the synergistic effects tend to increase with increasing asymmetry between the two surfactants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.