Abstract
Text representation is an essential task in transforming the input from text into features that can be later used for further Text Mining and Information Retrieval tasks. The commonly used text representation model is Bags-of-Words (BOW) and the N-gram model. Nevertheless, some known issues of these models, which are inaccurate semantic representation of text and high dimensionality of word size combination, should be investigated. A pattern-based model named Frequent Adjacent Sequential Pattern (FASP) is introduced to represent the text using a set of sequence adjacent words that are frequently used across the document collection. The purpose of this study is to discover the similarity of textual pattern between documents that can be later converted to a set of rules to describe the main news event. The FASP is based on the Pattern-Growth’s divide-and-conquer strategy where the main difference between FASP and the prior technique is in the Pattern Generation phase. This approach is tested against the BOW and N-gram text representation model using Malay and English language news dataset with different term weightings in the Vector Space Model (VSM). The findings demonstrate that the FASP model has a promising performance in finding similarities between documents with the average vector size reduction of 34% against the BOW and 77% against the N-gram model using the Malay dataset. Results using the English dataset is also consistent, indicating that the FASP approach is also language independent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.