Abstract
Abstract An accurate assessment of accumulative damage of a composite ship structure subjected to fire is strongly reliant on the accurate characterization of the time dependent temperature distribution within the composite system. Current state-of-the-art analysis tools assume that thermal–mechanical properties of composite structures are independent of temperature change and mass loss. In this paper, a temperature and mass dependent heat diffusion model is developed to characterize the temperature and mass dependent heat conduction, energy consumption resulting from the decomposition, and the energy transfer associated with vaporous migration. The temperature dependent thermal conductivity and specific heat capacity are determined for the composite at a given resin decomposition stage using a recently developed small-scale test apparatus. Given the temperature dependent thermal properties of the fiber and resin materials, the resulting temperature dependent thermal properties of a woven fabric composite are computed from the newly developed thermal–mechanical analysis tool (TMAT). To assess the effect of using single heating rate based mass loss on the composite fire response prediction, the kinetic parameters are obtained from the post-processing of thermogravimetric analysis (TGA) test data conducted at various heating rates. The effects of temperature dependent thermal conductivity, specific heat capacity, and kinetic parameters determined at different heating rates are explored through the application of the temperature and mass dependent fire model to a composite plate subjected to a hydrocarbon fire. The accuracy of the temperature and mass dependent thermal model is demonstrated by comparing its response prediction with available experimental data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Composites Part A: Applied Science and Manufacturing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.