Abstract

The tea yield estimation provides information support for the harvest time and amount and serves as a decision-making basis for farmer management and picking. However, the manual counting of tea buds is troublesome and inefficient. To improve the efficiency of tea yield estimation, this study presents a deep-learning-based approach for efficiently estimating tea yield by counting tea buds in the field using an enhanced YOLOv5 model with the Squeeze and Excitation Network. This method combines the Hungarian matching and Kalman filtering algorithms to achieve accurate and reliable tea bud counting. The effectiveness of the proposed model was demonstrated by its mean average precision of 91.88% on the test dataset, indicating that it is highly accurate at detecting tea buds. The model application to the tea bud counting trials reveals that the counting results from test videos are highly correlated with the manual counting results (R 2 = 0.98), indicating that the counting method has high accuracy and effectiveness. In conclusion, the proposed method can realize tea bud detection and counting in natural light and provides data and technical support for rapid tea bud acquisition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.