Abstract

Hexahydro-1,3,5-trinitro-1,3,5,-triazine (RDX) is a cyclic nitramine explosive that is a major component in many military high-explosive formulations. In this study, we developed a real-time TaqMan polymerase chain reaction (PCR) that targets the xplA functional gene involved in the breakdown/transformation of RDX. The xplA gene, described previously [Seth-Smith, H.M., Rosser, S.J., Basran, A., Travis, E.R., Dabbs, E.R., Nicklin S., Bruce, N.C., 2002. Cloning, sequencing, and characterization of the hexahydro-1,3,5-trinitro-1,3,5-triazine degradation gene cluster from Rhodococcus rhodochrous. Appl. Environ. Microbiol. 68, 4764–4771.], was isolated from Rhodococcus rhodochrous 11Y and codes for a fused flavodoxin–cytochrome P450 protein. We applied the xplA TaqMan PCR assay to detect and monitor strain 11Y in soil microcosms that had been amended with strain 11Y and RDX as well as soil microcosms in which soils had been subjected to heat-sterilization prior to the addition of strain 11Y and RDX. The specificity of the assay was tested against a number of genomic bacterial templates and surprisingly found to cross react with other RDX degrading bacteria. Two of these strains, Gordonia sp. KTR9 and Williamsia sp. KTR4, were previously isolated in our laboratory and were not known to possess xplA homologs. Southern blot analysis confirmed the presence of xplA gene homologs in both of these strains. The sensitivity of the xplA TaqMan PCR primer/probes set was evaluated using 11Y cell standards as well as 11Y cell standards spiked in soils that mimicked conditions found in the experimental soil microcosms. While the assay was found to be linear over a range of 6 orders of magnitude for both sets of standards, sensitivity of the assay was reduced between one and two logs for cells spiked in soil. The capacity to monitor the presence of specific microorganisms and/or genes coding enzymes involved in RDX transformation/breakdown in complex environmental samples will be critical for bioremediation strategies targeting explosives that rely on in situ bioaugmentation and monitored natural attenuation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.