Abstract

The interest in stem cell (SC) isolation from easily accessible clinical specimens is booming. The lack of homogeneity in pluri/multipotent SC preparation blurs standardization, which however is recommended for successful applications. Multipotent mesenchymal SCs (MSCs) in fact express a broad panel of surface antigens, which limit the possibility of sorting homogeneous preparations by using an immunotag-based method. We present a tag-less, flow-assisted method to purify, distinguish, and sort pluri/multipotent SCs obtained from clinical specimens, based on differences in the biophysical properties that cells acquire when in suspension under fluidic conditions. A suspension of cells in a transport fluid is injected into a ribbon-like capillary device by continuous flow. In a relatively short time (about 30 min), sorted cells are collected. We obtained baseline separation between MSCs and epithelial cells, which are important contaminants of isolated MSCs. The extent of separation is evaluated by flow cytometry through detection of a specific epithelial antigen. MSCs from various human sources also prove to have different, characteristic, highly-reproducible fractionation profiles. Finally, we evaluated the dissimilar differentiation potential among cell fractions obtained from sorting a single MSC source. After differentiation induction, a fraction displayed a differentiation yield close to 100%, whereas unfractionated cells contained only 40% of responding cells. The results demonstrate that the method presented is able to obtain selected and well-characterized living MSCs with an increased differentiation yield. Its reduced cost, full biocompatibility, and scale-up potential could make this method an effective procedure for stem cell selection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.