Abstract

BackgroundSalt overloading during agricultural processes is causing a decrease in crop productivity due to saline sensitivity. Salt tolerant cyanobacteria share many cellular characteristics with higher plants and therefore make ideal model systems for studying salinity stress. Here, the response of fully adapted Synechocystis sp. PCC6803 cells to the addition of 6% w/v NaCl was investigated using proteomics combined with targeted analysis of transcripts.ResultsIsobaric mass tagging of peptides led to accurate relative quantitation and identification of 378 proteins, and approximately 40% of these were differentially expressed after incubation in BG-11 media supplemented with 6% salt for 9 days. Protein abundance changes were related to essential cellular functional alterations. Differentially expressed proteins involved in metabolic responses were also analysed using the probabilitistic tool Mixed Model on Graphs (MMG), where the role of energy conversion through glycolysis and reducing power through pentose phosphate pathway were highlighted. Temporal RT-qPCR experiments were also run to investigate protein expression changes at the transcript level, for 14 non-metabolic proteins. In 9 out of 14 cases the mRNA changes were in accordance with the proteins.ConclusionSynechocystis sp. PCC6803 has the ability to regulate essential metabolic processes to enable survival in high salt environments. This adaptation strategy is assisted by further regulation of proteins involved in non-metabolic cellular processes, supported by transcriptional and post-transcriptional control. This study demonstrates the effectiveness of using a systems biology approach in answering environmental, and in particular, salt adaptation questions in Synechocystis sp. PCC6803

Highlights

  • Salt overloading during agricultural processes is causing a decrease in crop productivity due to saline sensitivity

  • In vitro isobaric labelling was applied to gain an insight into how Synechocystis cells adapt to high salt (6%) over an acclimation period of 9 days

  • Using the quantitative power of isobaric tags for relative and absolute quantification (iTRAQ), protein abundance changes were related to essential functional alterations in the cell system, which enabled survival in these adverse conditions

Read more

Summary

Introduction

Salt overloading during agricultural processes is causing a decrease in crop productivity due to saline sensitivity. Salt tolerant cyanobacteria share many cellular characteristics with higher plants and make ideal model systems for studying salinity stress. The response of fully adapted Synechocystis sp. PCC6803 cells to the addition of 6% w/v NaCl was investigated using proteomics combined with targeted analysis of transcripts. Working directly with plants can be disadvantageous due to high cost, long life cycle generation times and limited control over genetic manipulations. Due to their ability to perform oxygenic photosynthesis, cyanobacteria provide favourable models for understanding metabolic processes in higher plants.

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.