Abstract

Cancer encompasses a complex, heterogeneous and dynamic group of diseases that arise from perturbations to multiple biological networks within the body. A systems biology-based approach would help to decipher this complexity, to deeply characterize the pathophysiology of the disease and to stratify cancers into appropriate molecular subtypes to facilitate the development of personalized therapies. Technological advances made over the past decade have enabled multiscale, longitudinal measurements ('snapshots') of human biology, from single-cell analyses to whole-body monitoring. In this Perspective, we discuss some of these technologies and how they have (and will) contributed to our understanding of cancer biology as well as to the development of early diagnostics and personalized therapies. We argue that the integration of molecular profiling of cancerous tissues with deep, longitudinal profiling of the physiological state of an individual ('deep phenotyping') is key to understanding the prevention, initiation, progression and response to treatment of cancers. Systems biology-based approaches can provide an unprecedented trove of data for early detection of disease transitions, prediction of therapeutic responses and clinical outcomes, and for the design of personalized treatments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.