Abstract

A study has been conducted to examine the effects of macroscale, microscale, and nanoscale surface modifications in water pool boiling heat transfer and to determine the effects of combining the multiple scales. Nanostructured surfaces were created by acid etching, while microscale and macroscale surfaces were manufactured through a sintering process. Six structures were studied as individual and/or collectively integrated surfaces: polished plain, flat nanostructured, flat porous, modulated porous, nanostructured flat porous, and nanostructured modulated porous. Boiling performance was measured in terms of critical heat flux (CHF) and heat transfer coefficient (HTC). Both HTC and CHF have been greatly improved on all modified surfaces compared to the polished baseline. The CHF and HTC of the hybrid multiscale modulated porous surface have achieved the most significant improvements of 350% and 200% over the polished plain surface, respectively. Nanoscale, microscale, and macroscale integrated surfaces have been proven to have the most significant improvements on HTC and CHF. Experimental results were compared to the predictions of a variety of theoretical models with an attempt to evaluate both microscale and nanoscale models. It was concluded that models for both microscale and nanoscale structured surfaces needed to be further developed to be able to have good quantitative predictions of CHFs on structured surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.