Abstract

Artificial intelligence (AI) and machine learning (ML) tools play a significant role in the recent evolution of smart systems. AI solutions are pushing towards a significant shift in many fields such as healthcare, autonomous airplanes and vehicles, security, marketing customer profiling and other diverse areas. One of the main challenges hindering the AI potential is the demand for high-performance computation resources. Recently, hardware accelerators are developed in order to provide the needed computational power for the AI and ML tools. In the literature, hardware accelerators are built using FPGAs, GPUs and ASICs to accelerate computationally intensive tasks. These accelerators provide high-performance hardware while preserving the required accuracy. In this work, we present a systematic literature review that focuses on exploring the available hardware accelerators for the AI and ML tools. More than 169 different research papers published between the years 2009 and 2019 are studied and analysed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.