Abstract

BackgroundSeveral genome-scale metabolic reconstruction software platforms have been developed and are being continuously updated. These tools have been widely applied to reconstruct metabolic models for hundreds of microorganisms ranging from important human pathogens to species of industrial relevance. However, these platforms, as yet, have not been systematically evaluated with respect to software quality, best potential uses and intrinsic capacity to generate high-quality, genome-scale metabolic models. It is therefore unclear for potential users which tool best fits the purpose of their research.ResultsIn this work, we perform a systematic assessment of current genome-scale reconstruction software platforms. To meet our goal, we first define a list of features for assessing software quality related to genome-scale reconstruction. Subsequently, we use the feature list to evaluate the performance of each tool. To assess the similarity of the draft reconstructions to high-quality models, we compare each tool’s output networks with that of the high-quality, manually curated, models of Lactobacillus plantarum and Bordetella pertussis, representatives of gram-positive and gram-negative bacteria, respectively. We additionally compare draft reconstructions with a model of Pseudomonas putida to further confirm our findings. We show that none of the tools outperforms the others in all the defined features.ConclusionsModel builders should carefully choose a tool (or combinations of tools) depending on the intended use of the metabolic model. They can use this benchmark study as a guide to select the best tool for their research. Finally, developers can also benefit from this evaluation by getting feedback to improve their software.

Highlights

  • Several genome-scale metabolic reconstruction software platforms have been developed and are being continuously updated

  • The genome-scale metabolic reconstruction is transformed into a mathematical structure, an objective function is given, constraints are set to account for specific media conditions and the resulting Genome-scale metabolic model (GSMM) is evaluated to try to reproduce the experimental data

  • We created a list of relevant features for genome-scale reconstruction and software quality and we scored each tool depending on the performance (1: poor, 5: outstanding)

Read more

Summary

Introduction

Several genome-scale metabolic reconstruction software platforms have been developed and are being continuously updated. These tools have been widely applied to reconstruct metabolic models for hundreds of microorganisms ranging from important human pathogens to species of industrial relevance These platforms, as yet, have not been systematically evaluated with respect to software quality, best potential uses and intrinsic capacity to generate high-quality, genome-scale metabolic models. The genome-scale metabolic reconstruction is transformed into a mathematical structure, an objective function is given, constraints are set to account for specific media conditions and the resulting GSMM is evaluated to try to reproduce the experimental data. This iterative process of manual refinement is the limiting

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.