Abstract

Eight medium-sized carbon-containing molecules: linear carbon chains Cn (n = 6−9), triacetylene (C6H), tetracyanoethylene (C6N4), 1,1,1-trifluoroacetone enolate (CF3CHCHO), and C4O have been studied using six different density functional or hybrid Hartree−Fock density functional methods with a double-ζ basis set with polarization and diffuse functions (DZP++). Optimized geometries, harmonic vibrational frequencies, and adiabatic electron affinities were estimated and compared to known experimental values. The harmonic vibrational frequencies showed an overall agreement with experimental fundamentals of approximately 4−6% with one exception, the BHLYP functional. Average absolute errors in electron affinities estimated with the BP86, BLYP, and B3LYP functionals all show agreement of better than 0.2 eV with experiment and provide a viable method of predicting electron affinities for molecules of the same type as studied here.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.