Abstract

Lung nodule proposals generation is the primary step of lung nodule detection and has received much attention in recent years. In this paper, we first construct a model of 3-dimension Convolutional Neural Network (3D CNN) to generate lung nodule proposals, which can achieve the state-of-the-art performance. Then, we analyze a series of key problems concerning the training performance and efficiency. Firstly, we train the 3D CNN model with data in different resolutions and find out that models trained by high resolution input data achieve better lung nodule proposals generation performances especially for nodules in too small sizes, while consumes much more memory at the same time. Then, we analyze the memory consumptions on different platforms and the experimental results indicate that CPU architecture can provide us with larger memory and enables us to explore more possibilities of 3D applications. We implement the 3D CNN model on CPU platform and propose an Intel Extended-Caffe framework which supports many highly-efficient 3D computations, which is opened source at https://github.com/extendedcaffe/extended-caffe.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.