Abstract

The assembly from modular parts is an efficient approach for creating new devices in Synthetic Biology. In the "bottom-up" designing strategy, modular parts are characterized in advance, and then mathematical modeling is used to predict the outcome of the final device. A prerequisite for bottom-up design is that the biological parts behave in a modular way when assembled together. We designed a new synthetic device for post-transcriptional regulation of gene expression and tested if the outcome of the device could be described from the features of its components. Modular parts showed unpredictable behavior when assembled in different complex circuits. This prevented a modular description of the device that was possible only under specific conditions. Our findings shed doubts into the feasibility of a pure bottom-up approach in synthetic biology, highlighting the urgency for new strategies for the rational design of synthetic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.