Abstract

Nitrogen (N) and phosphorus (P) availability both control microbial decomposers and litter decomposition. However, these two key nutrients show distinct release patterns from decomposing litter and are unlikely available at the same time in most ecosystems. Little is known about how temporal differences in N and P availability affect decomposers and litter decomposition, which may be particularly critical for tropical rainforests growing on old and nutrient-impoverished soils. Here we used three chemically contrasted leaf litter substrates and cellulose paper as a widely accessible substrate containing no nutrients to test the effects of temporal differences in N and P availability in a microcosm experiment under fully controlled conditions. We measured substrate mass loss, microbial activity (by substrate induced respiration, SIR) as well as microbial community structure (using phospholipid fatty acids, PLFAs) in the litter and the underlying soil throughout the initial stages of decomposition. We generally found a stronger stimulation of substrate mass loss and microbial respiration, especially for cellulose, with simultaneous NP addition compared to a temporally separated N and P addition. However, litter types with a relatively high N to P availability responded more to initial P than N addition and vice versa. A third litter species showed no response to fertilization regardless of the sequence of addition, likely due to strong C limitation. Microbial community structure in the litter was strongly influenced by the fertilization sequence. In particular, the fungi to bacteria ratio increased following N addition alone, a shift that was reversed with complementary P addition. Opposite to the litter layer microorganisms, the soil microbial community structure was more strongly influenced by the identity of the decomposing substrate than by fertilization treatments, reinforcing the idea that C availability can strongly constrain decomposer communities. Collectively, our data support the idea that temporal differences in N and P availability are critical for the activity and the structure of microbial decomposer communities. The interplay of N, P, and substrate-specific C availability will strongly determine how nutrient pulses in the environment will affect microbial heterotrophs and the processes they drive.

Highlights

  • Nutrient availability often exerts strong limitations on ecological processes in different ecosystem types and across distinct biomes (Vitousek and Howarth, 1991; Elser et al, 2007)

  • In line with the increasing number of studies demonstrating that the combined NP additions increase ecosystem processes more than P or N added singly (e.g., Vitousek et al, 2010), we found an overall stronger stimulation of substrate mass loss and litter microbial activity with a simultaneous NP supply compared to a temporally separated N and P addition

  • In contrast to the ‘Liebig world’ view, which states that the nutrient in the shortest supply will be limiting, we demonstrate here that both elements can constrain litter decomposition and are required by microbial communities for maintaining their activity

Read more

Summary

Introduction

Nutrient availability often exerts strong limitations on ecological processes in different ecosystem types and across distinct biomes (Vitousek and Howarth, 1991; Elser et al, 2007). Fanin et al (2013) proposed that C: N: P of leaf litter leachates control the stoichiometry and structure of the microbial decomposer community. This finding highlights the importance of considering the relevant substrate used by microbial decomposers during the initial stage of decomposition, with leachate C: N: P stoichiometry varying from 169:2:1 to 8280:96:1 among different litter species in the studied tropical rainforest of French Guiana (Fanin et al, 2014). Besides the commonly measured stoichiometry of bulk leaf litter material, the variability of N and P in soluble compounds is likely critical for assessing the effects of any alterations in nutrient availability on microbial communities

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.