Abstract

AbstractPolymeric materials are usually tailored for specific functionality. A single polymer exhibiting multiple simultaneous functionalities often requires intricate molecular architecture, which is difficult to manufacture at scale because of its complex synthesis routes. Herein, a facile, partly renewable composition―prepared via reactive melt processing―that induces tunable functionalities such as 3D printability, shape recovery, and self‐healing while exhibiting satisfactory mechanical properties is reported. The system with a hydrogen‐bonded 3D network consists of thermally reversible nano‐scale agglomerates of sustainable, rigid phenolic oligomers and crystallizable flexible polymer. Local molecular mobility and temperature‐dependent relaxation and recovery of the non‐equilibrium networked states enable exploiting these simultaneous functionalities. Transitions involving solidification and structure stabilization at ambient temperature spanning several hours after preheating only at 70 °C directly contrast typical thermoplastic or thermoplastic elastomer behaviors. Results from this study can inform the design of future rheology modifiers and materials for soft robotics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.