Abstract

The correct inference of gene regulatory networks (GRN) remains as a fascinating task for researchers to understand the detailed process of complex biological regulations and functions. With availability of large dimensional microarray data, relationships among thousands of genes can be extracted simultaneously that is a reverse engineering problem. Among the different popular models to infer GRN, Recurrent Neural Networks (RNN) are considered as most popular and promising mathematical tool to model the dynamics of, as well as to infer the correct dependencies among genes from, biological data like time series microarray. RNN is closed loop Neural Network with a delay feedback. By observing the weights of RNN model, it is possible to extract the regulations among genes. Several metaheuristics or optimization techniques were already proposed to search the optimal value of RNN model parameters. In this review, we illustrate different problems regarding reverse engineering of GRN and how different proposed models can overcome these problems. It is observed that finding out the most suitable and efficient optimization techniques for the accurate inference of small artificial, large artificial, Dream4 Network,and real world GRNs with less computational complexity are still an open research problem to all.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.