Abstract

Advanced microscopy enables us to acquire quantities of time-lapse images to visualize the dynamic characteristics of tissues, cells or molecules. Microscopy images typically vary in signal-to-noise ratios and include a wealth of information which require multiple parameters and time-consuming iterative algorithms for processing. Precise analysis and statistical quantification are often needed for the understanding of the biological mechanisms underlying these dynamic image sequences, which has become a big challenge in the field. As deep learning technologies develop quickly, they have been applied in bioimage processing more and more frequently. Novel deep learning models based on convolution neural networks have been developed and illustrated to achieve inspiring outcomes. This review article introduces the applications of deep learning algorithms in microscopy image analysis, which include image classification, region segmentation, object tracking and super-resolution reconstruction. We also discuss the drawbacks of existing deep learning-based methods, especially on the challenges of training datasets acquisition and evaluation, and propose the potential solutions. Furthermore, the latest development of augmented intelligent microscopy that based on deep learning technology may lead to revolution in biomedical research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.