Abstract
Computational genomics is an emerging field that is enabling us to reveal the origins of life and the genetic basis of diseases such as cancer. Next Generation Sequencing (NGS) technologies have unleashed a wealth of genomic information by producing immense amounts of raw data. Before any functional analysis can be applied to this data, read alignment is applied to find the genomic coordinates of the produced sequences. Alignment algorithms have evolved rapidly with the advancement in sequencing technology, striving to achieve biological accuracy at the expense of increasing space and time complexities. Hardware approaches have been proposed to accelerate the computational bottlenecks created by the alignment process. Although several hardware approaches have achieved remarkable speedups, most have overlooked important biological features, which have hampered their widespread adoption by the genomics community. In this paper, we provide a brief biological introduction to genomics and NGS. We discuss the most popular next generation read alignment tools and algorithms. Furthermore, we provide a comprehensive survey of the hardware implementations used to accelerate these algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE/ACM transactions on computational biology and bioinformatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.