Abstract

The convergence of extremely high levels of hardware concurrency and the effective overlap of computation and communication in asynchronous executions has resulted in increasing nondeterminism in High-Performance Computing (HPC) applications. Nondeterminism can manifest at multiple levels: from low-level communication primitives to libraries to application-level functions. No matter its source, nondeterminism can drastically increase the cost of result reproducibility, debugging workflows, testing parallel programs, or ensuring fault-tolerance. Nondeterministic executions of HPC applications can be modeled as event graphs, and the applications’ nondeterministic behavior can be understood and, in some cases, mitigated using graph comparison algorithms. However, a connection between graph comparison algorithms and approaches to understanding nondeterminism in HPC still needs to be established. This survey article moves the first steps toward establishing a connection between graph comparison algorithms and nondeterminism in HPC with its three contributions: it provides a survey of different graph comparison algorithms and a timeline for each category’s significant works; it discusses how existing graph comparison methods do not fully support properties needed to understand nondeterministic patterns in HPC applications; and it presents the open challenges that should be addressed to leverage the power of graph comparisons for the study of nondeterminism in HPC applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.