Abstract

In distributed optimization of multi-agent systems, agents cooperate to minimize a global function which is a sum of local objective functions. Motivated by applications including power systems, sensor networks, smart buildings, and smart manufacturing, various distributed optimization algorithms have been developed. In these algorithms, each agent performs local computation based on its own information and information received from its neighboring agents through the underlying communication network, so that the optimization problem can be solved in a distributed manner. This survey paper aims to offer a detailed overview of existing distributed optimization algorithms and their applications in power systems. More specifically, we first review discrete-time and continuous-time distributed optimization algorithms for undirected graphs. We then discuss how to extend these algorithms in various directions to handle more realistic scenarios. Finally, we focus on the application of distributed optimization in the optimal coordination of distributed energy resources.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.