Abstract

Anion-exchange membrane fuel cells (AEMFCs) show substantially enhanced (initial) performance and efficiency with the increase of operational temperature (where typical values are below 80 °C). This is directly due to the increase in reaction and mass transfer rates with temperature. Common sense suggests however that the increase of ionomeric material chemical degradation kinetics with temperature is likely to offset the above mentioned gain in performance and efficiency. In this computational study we investigate the combined effect of a high operating temperature, up to 120 °C, on the performance and stability of AEMFCs. Our modeling results demonstrate the expected positive impact of operating temperature on AEMFC performance. More interestingly, under certain conditions, AEMFC performance stability is surprisingly enhanced as temperature increases. While increasing cell temperature enhances degradation kinetics, it simultaneously improves water diffusivity through the membrane, resulting in higher hydration levels at the cathode. This, in turn, encourages a decrease in ionomer chemical degradation which depends on the hydration as well as on temperature, leading to a significant increase in AEMFC performance stability and, therefore, in its lifetime. These findings predict the possible advantage (and importance), in terms of performance and durability, of developing high-temperature AEMFCs for automotive and other applications. • Performance stability of high-temperature AEMFCs (HT-AEMFC) is predicted. • Operating AEMFC at higher temperatures facilitates water management in the cell. • Enhanced water diffusivity reduces ionomer degradation rate at higher temperatures. • AEMFC stability may be enhanced with an increase in the operating temperature. • High-temperature operation is a promising route to achieve AEMFC life >6000 h.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.