Abstract
The dilational viscoelastic properties of a glucosamide-based trisiloxane gemini surfactant at the air/water interface were investigated. Aqueous solutions of the glucosamide-based trisiloxane gemini surfactant were spread onto a pendant drop and the dynamic surface tensions were measured by means of axisymmetric drop shape analysis. The surface dilatational elasticity, viscosity, and phase angle of the adsorption monolayer were also determined by the oscillating drop technique. The influences of frequency and concentration on the surface dilational properties were expounded. It is showed that the surface dilational modulus and elastic modulus increased with the increase of frequency, the viscous modulus was complex, while the phase angle decreased with the increase of frequency. Surface dilational modulus, elastic modulus, and viscous modulus passed through the maximum with the increase of bulk concentration and the phase angle increased with the increase of concentration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.