Abstract

Considerable uncertainty remains regarding the types of features human vision uses for shape representation. Visual-search experiments are reported which assessed the hypothesis of a surface-based (i.e., edge-bounded polygons) code for shape representation in human vision. The results indicate slower search rates and/or longer response times when the target shape shares its constituent surfaces with distractors (conjunction condition) than when the target surfaces are unique in the display (nonconjunction condition). This demonstration is made using test conditions that strictly control any potential artifact pertaining to target-distractor similarity. The surface-based code suggested by this surface-conjunction effect is strictly 2-D, since the effect occurs even when the surfaces are shared between the target and distractors in the 2-D image but not in their 3-D instantiation. Congruently, this latter finding is unaltered by manipulations of the richness of the depth information offered by the stimuli. It is proposed that human vision uses a 2-D surface-based code for shape representation which, considering other key findings in the field, probably coexists with an alternative representation mode based on a type of structural description that can integrate information pertaining to the 3-D aspect of shapes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.