Abstract

Sensing small biomolecules in biofluids remains challenging for many optical chemosensors based on supramolecular host-guest interactions due to adverse interplays with salts, proteins, and other biofluid components. Instead of following the established strategy of developing alternative synthetic binders with improved affinities and selectivity, we report a molecular engineering approach that addresses this biofluid challenge. Here we introduce a cucurbit[8]uril-based rotaxane chemosensor feasible for sensing the health-relevant biomarker tryptophan at physiologically relevant concentrations, even in protein- and lipid-containing human blood serum and urine. Moreover, this chemosensor enables emission-based high-throughput screening in a microwell plate format and can be used for label-free enzymatic reaction monitoring and chirality sensing. Printed sensor chips with surface-immobilized rotaxane-microarrays are used for fluorescence microscopy imaging of tryptophan. Our system overcomes the limitations of current supramolecular host-guest chemosensors and will foster future applications of supramolecular sensors for molecular diagnostics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.