Abstract

When iteratively solving optimization problems arising from engineering design applications, it is sometimes crucial that all iterates satisfy a given set of “hard” inequality constraints, and generally desirable that the objective function value improve at each iteration. In this paper, we propose an algorithm of the successive quadratic programming (SQP) type which, unlike other algorithms of this type, does enjoy such properties. Under mild assumptions, the new algorithm is shown to converge from any initial point, locally superlinearly. Numerically tested, it has proven to be competitive with the most successful currently available nonlinear programming algorithms, while the latter do not exhibit the desired properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.