Abstract
Laser processing is an efficient method for fabricating a superhydrophobic surface and has attracted much attention due to its multifunctionality. However, excessive laser processing, such as laser beam overlap and multiple scans, generates both a thick, brittle recast layer and a thin material thickness, thereby greatly reducing the mechanical strength of the substrate. In addition, there is no report on fabricating a superhydrophobic surface on a superalloy substrate whose application includes a self-cleaning property. This work proposes the fabrication of a superhydrophobic surface on a superalloy substrate with high mechanical strength by optimizing the laser processing parameters including laser power, scanning speed, line spacing, and number of scans. We found that the microstructures required by superhydrophobicity could be constructed with a single laser scan. which could guarantee a minimal loss of the mechanical strength. The fabricated superhydrophobic surface on the superalloy substrate exhibited excellent self-cleaning of carbon deposition, showing good application potential in the aero engine field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.