Abstract

This paper presents the numerical analysis of rudder cavitation in propeller slipstream and the development of a new rudder system aimed for lift augmentation and cavitation suppression. The new rudder system is equipped with cam devices which effectively close the gap between the horn/pintle and movable wing parts. A computational fluid dynamics code that solves the Reynolds-averaged Navier–Stokes equations is used to analyze the flow field of various rudder systems in propeller slipstream. The body force momentum source terms that mimic flow field behind a rotating propeller are added in the momentum equations to represent the influence of the propeller and its slipstream. For detailed explication of the new rudder system’s lift augmentation and cavitation suppression mechanism, three-dimensional flow analysis is carried out. Simulations clearly display the mechanism of the lift augmentation and cavitation suppression. The computational results suggest that the Reynolds-averaged Navier–Stokes-based computational fluid dynamics reproduces the flow field around a rudder in propeller slipstream and that the present concept for a cavitation suppressing rudder system is highly feasible and warrant further study for inclusion of the interaction with hull and mechanical design for manufacturing and operations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.