Abstract

In this paper, a new classification method (SDCC) for high dimensional text data with multiple classes is proposed. In this method, a subspace decision cluster classification (SDCC) model consists of a set of disjoint subspace decision clusters, each labeled with a dominant class to determine the class of new objects falling in the cluster. A cluster tree is first generated from a training data set by recursively calling a subspace clustering algorithm Entropy Weighting k-Means algorithm. Then, the SDCC model is extracted from the subspace decision cluster tree. Various tests including Anderson–Darling test are used to determine the stopping condition of the tree growing. A series of experiments on real text data sets have been conducted. Their results show that the new classification method (SDCC) outperforms the existing methods like decision tree and SVM. SDCC is particularly suitable for large, high dimensional sparse text data with many classes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.