Abstract
The de Casteljau evaluation algorithm applied to a finite sequence of control points defines a Bézier curve. This evaluation procedure also generates a subdivision algorithm and the limit of the subdivision process is this same Bézier curve. Extending the de Casteljau subdivision algorithm to an infinite sequence of control points defines a new family of curves. Here, limits of this stationary non-uniform subdivision process are shown to be equivalent to curves whose control points are the original data points and whose blending functions are given by the Poisson distribution. Thus this approach generalizes standard subdivision techniques from polynomials to arbitrary analytic functions. Extensions of this new subdivision scheme from curves to tensor product surfaces are also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.