Abstract

Detecting word sense changes can be of great interest in the field of digital humanities. Thus far, most investigations and automatic methods have been developed and carried out on English text and most recent methods make use of word embeddings. This paper presents a study on using Word2Vec, a neural word embedding method, on a Swedish historical newspaper collection. Our study includes a set of 11 words and our focus is the quality and stability of the word vectors over time. We investigate whether a word embedding method like Word2Vec can be effectively used on texts where the volume and quality is limited.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.